
From: Moody, Dustin (Fed)
To: Kerman, Sara J. (Fed)
Subject: RE: some small PQC updates
Date: Wednesday, March 29, 2017 12:26:36 PM
Attachments: FAQ-randomness.rtf

This can be added as just a new question that will be in the FAQ. It doesn’t need to be in its own
section or anything.

But please use the attached version. Ray already found a mistake that has been corrected in this
version.

Dustin

From: Kerman, Sara J. (Fed)
Sent: Wednesday, March 29, 2017 12:16 PM
To: Moody, Dustin (Fed) <dustin.moody@nist.gov>
Subject: RE: some small PQC updates

So you want this to be the start of a new “section” of FAQs? And not have it under the PQC Call for
Proposals? Just confirming….

From: Moody, Dustin (Fed)
Sent: Wednesday, March 29, 2017 12:13 PM
To: Kerman, Sara J. (Fed) <sara.kerman@nist.gov>
Subject: some small PQC updates

Sara,
 Can you add a new question to our PQC FAQ? It’s contained in the attachment called FAQ-
randomness. Also, can you update our API document to the one attached? You can put them in
whatever format/font etc. that you want to. Thanks,

Dustin

mailto:dustin.moody@nist.gov
mailto:sara.kerman@nist.gov
mailto:sara.kerman@nist.gov

Q: How does a submission obtain secure randomness?

A: The function randombytes() will be available to the submitters. This is a function from the SUPERCOP test environment and should be used to generate seed values for an algorithm. If the algorithm needs additional randomness beyond the seed value a NIST-approved DRBG should be used. As stated in the call for algorithms, the DRBG should be NIST approved. If a non-approved DRBG is used “the submitter shall provide an explanation for why a NIST-approved primitive would not be suitable.” The length of the random value obtained from randombytes() should be selected to match one of the security categories in the call for algorithms. That is, if the call to generate a key pair is from category 1 the randomness value should be 192 bits (24 bytes), if the call is from category 2 or 3 it should be 256 bits (32 bytes) and if it is from category 4 or 5 it should be 320 bits (40 bytes). The DRBG will be used to expand that if necessary.

For functional and timing tests a deterministic generator is used inside randombytes() to produce the seed values. If security testing is being done simply substitute calls to a true hardware RBG inside randombytes().

Function prototype for randombytes() is:

// The xlen parameter is in bytes

void randombytes(unsigned char *x,unsigned long long xlen)

The following demonstrate the use of the KAT and non-KAT versions of the functions to generate a key pair for encryption:

int crypto_encrypt_keypair_KAT(

 unsigned char *pk,

 unsigned char *sk,

 const unsigned char *randomness

)

int crypto_encrypt_keypair(unsigned char *pk, unsigned char *sk)

{

 unsigned char pk[CRYPTO_PUBLICKEYBYTES];

 unsigned char sk[CRYPTO_SECRETKEYBYTES];

 unsigned char seed[CRYPTO_RANDOMBYTES];

 randombytes(seed, CRYPTO_RANDOMBYTES);

 crypto_encrypt_keypair_KAT(pk, sk, seed);

}

